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LETTER TO THE EDITOR

New examples of solvable non-uniform spin lattices

N G Inozemtseva and V I Inozemtsev
Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia

Received 25 October 1996

Abstract. We propose a three-parametric extension of integrable non-uniform spin lattices in
1D. In our model, the spins are located at the equilibrium positions of particles interacting
via the potential(sinh(r))−2, the particles being confined by some external field. The Lax
representation, conserved current and special set of eigenvectors are presented in explicit form.

In recent years, there has been renewed interest to the problem of finding exact solutions to
many-body lattice systems [1–6]. The formal simplicity of the spectrum of the integrable
Haldane–ShastryS = 1

2 spin chain [1, 2] with the interaction between spins being
proportional to the inverse square of their chord distance stimulated the search for and
investigation of its various extensions and generalizations [2–6] connected with integrable
classical Calogero–Sutherland particle systems on a continuous line. The family of the
latter is rather rich, and in the general hyperbolic case it includes interaction with a three-
parametric external field [7]. Despite the above correspondence having been investigated
in detail for Calogero systems in a field with a harmonic oscillator [3] and hyperbolic
Sutherland systems in a field with a Morse potential [5], the general situation has not so far
been clear.

In this letter, we shall give the arguments supporting the general statement about one-
to-one correspondence between integrable classical Sutherland systems in external fields
and solvable spin chains. Moreover, we are able to present some eigenvectors of these
inhomogeneous chains in explicit form for the case ofS = 1

2.
It is generally believed that all the family of solvable spin chains of that type might

be viewed as the static(λ→∞) limit of the systems containing particles with spatial and
internal degrees of freedom with the Hamiltonian

H(N) =
N∑
j=1

[p2
j /2+W(xj )] +

N∑
j<k

λ(λ+ Pjk)V (xj − xk) (1)

where the{xj , pj } are particle coordinates and momenta, the{Pjk} act in the internal space
as permutations and

V (x) = x−2 or [sinh(x)]−2. (2)

The integrability of the systems described by (1) without internal degrees of freedom has
been established in [7] in the latter case of (2) for the following choice of the potential of
an external field:

W(x) = α2 cosh(4x)+ 2β cosh(2x)+ 2γ sinh(2x). (3)
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In the rational Calogero case of (2), the integrability of (1) has been proved in [3] for
the harmonic external potential by constructing a special set of operators commuting
with (1). Later, it was found that this generalized Calogero system has a rather simple
equidistant spectrum and posesses explicit Yangian symmetry via a special form of the Lax
representation [8].

In the general hyperbolic case, the Hamiltonian equations of motion can also be written
in some Lax form. It turns out, however, that this form is inappropriate for obtaining
conserved currents for the model. Moreover, the Hamiltonian cannot be found among the
invariants of theL matrix which do not commute with it. For this reason, we shall restrict
ourselves to the non-uniform lattice spin model described by the Hamiltonian

H =
N∑
j6k

hjkPjk (4)

where

hjk = sinh−2(xj − xk) (5)

and{xj } are the coordinates of classical particles at equilibrium satisfying the equations

−2
∑
k 6=j

hjkcjk +W ′(xj ) = 0 (6)

wherecjk = coth(xj −xk). To construct the Lax pair for this system, consider the following
ansatz resembling that found in [7, 9]:

L =
(

L0 ψ + ρ
−ψ − ρ −L0

)
M =

(
M0+m φ

φ M0+m

)
whereL0 andM0 constitute the standard Lax pair for the SutherlandN -particle system [9]:

(L0)jk = (1− δjk)cjkPjk (M0)jk = (1− δjk)hjkPjk − δjk
N∑
s 6=j

hjsPjs

andψ, φ, ρ andm are(N ×N) matrices with entries

(ψ)jk = ξ(zj )δjk (φ)jk = ϕ(zj )δjk (m)jk = µ(zj )δjk (ρ)jk = Pjk(1− δjk)
wherezj = exp(2xj ). One finds that the Lax relation [H,L] = [L,M] is equivalent to the
overdetermined set of functional equations

cjk[µ(zj )− µ(zk)] + [ϕ(zj )+ ϕ(zk)] = 0

cjk[ϕ(zj )+ ϕ(zk)] + hjk[ξ(zj )− ξ(zk)] + µ(zj )− µ(zk) = 0.

Starting from the more restrictive first equation, one obtains the general solution of this set
in the form

µ(z) = µ1z + µ2z
−1 ϕ(z) = −µ1z + µ2z

−1 ξ(z) = µ1z + µ2z
−1+ γ.

The corresponding potential of the external field reads

W(z) = 2
[
µ2

1z
2+ µ2

2z
−2+ (2γ − 1/2)(µ1z + µ2z

−1)
]
.

It depends on three arbitrary parameters as in (3). However, one can see from the form of
the Lax pair that the matrixM obeys the condition

∑2N
j=1Mjk = 0, which guarantees its

usefulness for constructing integrals of motion [8] only for the special one-parametric case
of the Morse potential [5]. In other cases, as mentioned above, the existence of the Lax
representation does not allow one to find the explicit form of the conserved quantities.
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It is quite natural to assume that extra constants of motion for the model (4), (5) are
given in terms of polynomials in the permutations{Pjk}, as occurs for all the lattice spin
models known at this time [3–6]. We have found, by modification of the traces of theL

matrix, that the minimal degree of these polynomials is 3. Moreover, the operator

I =
N∑

j 6=k 6=l 6=m
cjkcklPjklm − 1

2

N∑
j 6=k 6=l

(cjl − ckl)2Pjk +
N∑
j 6=k
(F (xj )+ F(xk))Pjk

where Pjklm = PjkPklPlm is the cyclic permutation, commutes withH if F obeys the
relation

g(xj , xk)+ g(xk, xl)+ g(xl, xj ) = 0

with

g(xj , xk) = 2hjk(F (xj )− F(xk))+ cjk(W ′(xj )+W ′(xk)).
As a consequence, one findsg(xj , xk) = G(xj )−G(xk), F(x) = −W(x) and the functional
equation for the potentialW(x):

cjk(W
′(xj )+W ′(xk))− 2hjk(W(xj )−W(xk)) = G(xj )−G(xk).

Its general solution contains three arbitrary parameters and reproduces the potential (3)
which is already known from the integrability condition for classical particle systems and the
existence of the Lax representation for the lattice Hamiltonian (4). To construct the explicit
eigenvectors of our spin Hamiltonian, one needs more information about the equilibrium
part of its classical counterpart

H =
N∑
j<k

zj zk

(zj − zk)2 +
1

4

N∑
j=1

[
α2

2
(z2
j + z−2

j )+ (β + γ )zj + (β − γ )z−1
j

]
(7)

(recall thatzj = exp(2xj )) and the corresponding equilibrium equations

−
N∑
k 6=j

zk(zj + zk)
(zj − zk)3 +

1

4
[α2(zj − z−3

j )+ β + γ − (β − γ )z−2
j ] = 0. (8)

The latter are in general highly nonlinear and the properties of their solutions are far from
obvious. To investigate some of them, the trick used in [10–12] might be applied.

Following Ahmed [11], let us denote asPN(z) a polynomial constructed from the
solution{zj } of the equilibrium equations

PN(z) =
N∏
j=1

(z − zj ). (9)

Note that for eachj one can define the functionFj (z) = z(z + zj )(z − zj )−3d logPN(z)/dz
which is proportional toz−2 asz→∞ and has simple poles atz = zk (k 6= j) with residues
resFj (z)|z=zk = −zk(zj + zk)(zj − zk)−3. Then the equilibrium equations (8) can be recast
in the form

resFj (z)|z=zj = 2a1j + zj (4a2j − 3a2
1j )+ z2

j (a3j + a3
1j − 2a1j a2j )

= α2(zj − z−3
j )+ β + γ − (β − γ )z−2

j (10)

whereaλj = [P ′N(zj )]
−1 (d/dz)λ+1PN(z)|z=zj . Let us now suppose thatPN(z) obeys the

second-order differential equation

z2P ′′N(z)+ w1(z)P
′
N(z)+ w2(z)PN(z) = 0 (11)
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wherew1,2(z) are some polynomials inz. By using the equalityPN(zj ) = 0, one finds
upon consecutive differentiation of (11) that resFj (z)|z=zj is expressed throughw1,2, and
that equation (10) is equivalent to the relation

d

dz

[
w2+ 1

4
(α2(z2+ z−2)− z−2w2

1)+
1

2
w′1+ 2(z(β + γ )+ (β − γ )z−1)

]
= 0.

It is satisfied byw1(z) = −α(z2 − 1) + (4α−1β − γ1)z, w2(z) = (α − 4β)z + εN , where
γ1 = 4α−1γ . One of the solutions to (11) is anN th-degree polynomial if the parametersα
andβ are correlated:

β = −N − 1

4
α. (12)

Taking this constraint into account, one can finally write equation (11) in the form

z2P ′′N(z)− [α(z2− 1)+ (γ1+N − 1)z]P ′N(z)+ [αNz + εN ]PN(z) = 0. (13)

It has two irregular points located atz = 0,∞ and thus cannot be reduced to the equation
of the Bessel or hypergeometric type. The substitutionPN(z) =

∑N−1
l=0 dlz

l + zN yields the
recurrence relation for the coefficients{dl}
αdl−1(N − l + 1)+ dl [εN + l(l − γ1−N)] + α(l + 1)dl+1 = 0 l = 0, . . . , N (14)

which has to be treated under the conditions

d−1 = 0 dN = 1 dN+1 = 0. (15)

This results in anN th-order algebraic equation in the parameterεN , the proper solution
being determined by the positivity of all the roots ofPN(z). It is unique since the system
of particles with repulsive interaction has only one equilibrium position being confined by
the external field (3). It is worth noting that (13)–(15) allow one to express various sums
Sδ =

∑N
j=1 z

δ
j of the roots of (8) in terms ofα, γ1 andεN ; in particular, some of these are

given by

S−2 = N + εNα−2(γ1+N − 1) S−1 = α−1εN

S1 = α−1(εN −Nγ1) S2 = N − α−2(εN −Nγ1)(γ1−N + 1).

The energy (7) of the classical equilibrium configuration does not depend onεN :

Ecl = −N
2

[
N2− 1

3
+ γ 2

1 − 2α2

]
.

Having prepared the solutions to the equilibrium equations in a suitable form, let us now
consider the quantum spin chain with the Hamiltonian (4) under constraint (12) and construct
its eigenvectors by the action of the spin-flip operators{σ−j } on one of the ferromagnetic
vacua|0〉 = | ↑↑ · · · ↑〉. The eigenvectors in sectorsSz = N/2−M can be written as

|φM〉 =
N∑

j1 6=j2···6=jM
φj1···jM

M∏
α=1

σ−jα |0〉. (16)

As for the amplitudes of the excitations in the one-magnon sector of the model, we use the
ansatz

φj = Q(zj )

P ′N(zj )
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whereQ(z) is some polynomial. Using the properties of{zj }, we find that the eigenproblem
H|φ1〉 = ε1|φ1〉 is equivalent to the differential equation

z2Q′′ −Q′[α(z2− 1)+ (γ1+N − 3)z] +Q[α(N − 2)z + εN + 2ε1− (γ1+N − 1)] = 0.

(17)

An analysis similar to that for (13) shows that there areN −1 polynomial solutions to (17)
which correspond to different choices of the eigenenergyε1. Together with the trivial
solution to the eigenproblem,φj = constant, they give a complete set of one-magnon
excitations.

In M-magnon sectors withM 6 N/2, we work with the ansatz

φj1···jM =
∏M
λ>µ(zjλ − zjµ)2∏M
µ=1P

′
N(zjµ)

Q(zj1, . . . , zjM )

whereQ(z1, . . . , zM) is some symmetric polynomial in{z} of degreeD 6 N − 2M + 1,
and find that the eigenequation

M∑
s=1

N∑
k 6=js

hjsk[φj1···js−1kjs+1···jM − φj1···jM ] +
(

M∑
s 6=k

hjsjk + εM
)
φj1···jM = 0

can be cast in the form of a second-order partial differential equation forQ:
M∑
j=1

{
z2
j

∂2

∂z2
j

− [α(z2
j − 1)+ (γ1+N − 3)zj ]

∂

∂zj

}
+ 2

M∑
j 6=k

z2
j ∂/∂zj − z2

k ∂/∂zk

zj − zk Q

+
{
M[(M − 1)(4M + 1)/3−M(γ1+N − 1)+ εN ]

+α(N − 2M)
M∑
k=1

zk − 2εM

}
Q = 0. (18)

For evenN , an obvious solution to (18) in the sector withS = Sz = 0 (M = N/2) is
Q = constant, which gives an eigenenergy

εN/2 = 1/2{M[(M − 1)(4M + 1)/3−M(γ1+N − 1)+ εN ]}.
For non-uniform lattices withN 6 8 under various choices of parameters in (3) constrained
by (12) we have verified numerically that this is the exact ground-state energy of the
antiferromagnetic spin chain with the Hamiltonian (4). However, we did not succeed in
obtaining analytical proof of this fact, as was done in [13] for the Haldane–Shastry chain,
since the equivalent form of the HamiltonianH − εN/2, in contrast to [13], is no longer
evidently positive everywhere except for this state.

For oddN = 2L+ 1, the states with minimal total spin and its projection are given by
M = L. TheQ-polynomials, as follows from (18), should have degree 1 in each variable
{zj }, being symmetric in{zj }. This means thatQ should be linear in the variables

a1 =
L∏
j=1

zj al = [(l − 1)!]−1D̂l−1a1 26 l 6 L

whereD̂ =∑L
j=1 ∂/∂zj . Equation (18) transforms into a system of(L+1) linear equations

for the corresponding coefficients which gives the set of onlyL + 1 energies of the spin
chain. A similar reduction procedure works in eachM-magnon sector where the degree of
theQ-polynomial in each variable{al} should beN − 2M.
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In conclusion, we have demonstrated that the quantum spin chains defined on a non-
uniform lattice given by the roots of the equilibrium equations may be completely integrable
by the construction of the explicit form of the Lax relation and one of the conserved currents.
We have calculated some of their eigenenergies for the special case in which the solutions
to (8) are expressed in terms of the roots of some polynomials. This condition leads to the
restriction (12) on the parameters of an external potential confining the classical Sutherland
systems.

The construction of the whole set of eigenvectors and finding other conserved currents
of the model remains an interesting open problem. It might probably be solved within the
framework of the general scheme of the quantum inverse scattering method adapted in [14]
to systems with non-trivial boundary conditions. However, at present there is no explicit
way of applying this scheme to our model.
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