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LETTER TO THE EDITOR

New examples of solvable non-uniform spin lattices

N G Inozemtseva ahV | Inozemtsev
Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia

Received 25 October 1996

Abstract. We propose a three-parametric extension of integrable non-uniform spin lattices in
1D. In our model, the spins are located at the equilibrium positions of particles interacting
via the potential(sinh(r))*z, the particles being confined by some external field. The Lax
representation, conserved current and special set of eigenvectors are presented in explicit form.

In recent years, there has been renewed interest to the problem of finding exact solutions to
many-body lattice systems [1-6]. The formal simplicity of the spectrum of the integrable
Haldane—Shastn§ = % spin chain [1, 2] with the interaction between spins being
proportional to the inverse square of their chord distance stimulated the search for and
investigation of its various extensions and generalizations [2—6] connected with integrable
classical Calogero—Sutherland particle systems on a continuous line. The family of the
latter is rather rich, and in the general hyperbolic case it includes interaction with a three-
parametric external field [7]. Despite the above correspondence having been investigated
in detail for Calogero systems in a field with a harmonic oscillator [3] and hyperbolic
Sutherland systems in a field with a Morse potential [5], the general situation has not so far
been clear.

In this letter, we shall give the arguments supporting the general statement about one-
to-one correspondence between integrable classical Sutherland systems in external fields
and solvable spin chains. Moreover, we are able to present some eigenvectors of these
inhomogeneous chains in explicit form for the caseSef %

It is generally believed that all the family of solvable spin chains of that type might
be viewed as the statig. — oo) limit of the systems containing particles with spatial and
internal degrees of freedom with the Hamiltonian

N N
HY =3 "[p2/24 Wapl + Y 20+ PV () — x0) €Y

j=1 Jj<k

where the{x;, p;} are particle coordinates and momenta, {Rg} act in the internal space
as permutations and

Vx) =x"? or [sinh(x)] 2. 2

The integrability of the systems described by (1) without internal degrees of freedom has
been established in [7] in the latter case of (2) for the following choice of the potential of
an external field:

W(x) = a?cosh4x) + 28 cosh2x) + 2y sinh(2x). )

0305-4470/97/060137+06$19.5@C) 1997 I0OP Publishing Ltd L137



L138 Letter to the Editor

In the rational Calogero case of (2), the integrability of (1) has been proved in [3] for
the harmonic external potential by constructing a special set of operators commuting
with (1). Later, it was found that this generalized Calogero system has a rather simple
equidistant spectrum and posesses explicit Yangian symmetry via a special form of the Lax
representation [8].

In the general hyperbolic case, the Hamiltonian equations of motion can also be written
in some Lax form. It turns out, however, that this form is inappropriate for obtaining
conserved currents for the model. Moreover, the Hamiltonian cannot be found among the
invariants of theL. matrix which do not commute with it. For this reason, we shall restrict
ourselves to the non-uniform lattice spin model described by the Hamiltonian

N
H= Zhjk Pjk (4)
J<k
where
hj = sinh 2(x; — x;) (5)
and{x;} are the coordinates of classical particles at equilibrium satisfying the equations
=23 hjkcik + W' (x;) =0 (6)
k#j

wherecj, = coth(x; —x;). To construct the Lax pair for this system, consider the following
ansatz resembling that found in [7, 9]:

L M
I — 0 v+p M- otm ¢
—¥v—p —Lo ¢ Mo+ m
where Lo and My constitute the standard Lax pair for the Sutherlahgarticle system [9]:

N
(Lo)jk = (L= 8j)cjx Pk (Mo)jx = L =8 )hjx Pix — Sjk Z hjs Pjg
s#]
andvy, ¢, p andm are(N x N) matrices with entries
W) = &(zj)jx (@) = 0(z;)djk (m)jr = u(z;)éjx (P)jk = Py (1 — 1)

wherez; = exp(2x;). One finds that the Lax relatiorH], L] = [L, M] is equivalent to the
overdetermined set of functional equations

cirlu(zj) — n(z] + [e(z) + ¢(z)] =0

cirle(z)) + @zl + hjrl€(z) — E(z)] + m(z;) — n(zr) = 0.

Starting from the more restrictive first equation, one obtains the general solution of this set
in the form

1 1

1(z) = 1z + poz” 9(2) = —paz + paz” E() = paz+paz t+y.
The corresponding potential of the external field reads

W(2) = 2[n2z% + usz 2 + 2y — 1/2)(maz + paz ).
It depends on three arbitrary parameters as in (3). However, one can see from the form of
the Lax pair that the matri®/ obeys the conditiorEfﬁ1 M;, = 0, which guarantees its
usefulness for constructing integrals of motion [8] only for the special one-parametric case

of the Morse potential [5]. In other cases, as mentioned above, the existence of the Lax
representation does not allow one to find the explicit form of the conserved quantities.
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It is quite natural to assume that extra constants of motion for the model (4), (5) are
given in terms of polynomials in the permutatiof®;}, as occurs for all the lattice spin
models known at this time [3-6]. We have found, by modification of the traces of.the
matrix, that the minimal degree of these polynomials is 3. Moreover, the operator

N N N
1
1= Z CikCrt Pjram — > Z (cj1 — cu)’ Py + Z(F(Xj) + F () Pk
j#kElEm J#kH#L J#k
where Pjy,, = PjxPu Py, is the cyclic permutation, commutes with if F obeys the
relation
g(xj, xi) + glxx, xp) + g(x;, x;) =0
with

g(xj, i) = 2hj (F(xj) — F(xp)) + e (W' (x)) + W' (x0)).
As a consequence, one fingéy;, xi) = G(x;) — G(xx), F(x) = —W(x) and the functional
equation for the potentidl (x):

k(W' (xj) + W' (xi)) = 2hjx (W (x)) = W(xp) = G(x;) — G(xx).

Its general solution contains three arbitrary parameters and reproduces the potential (3)
which is already known from the integrability condition for classical particle systems and the
existence of the Lax representation for the lattice Hamiltonian (4). To construct the explicit
eigenvectors of our spin Hamiltonian, one needs more information about the equilibrium
part of its classical counterpart

N . 1 N 2
H=Y TF o) ["‘2@; +5 )+ Bz + (- y)z,-‘l] )

(zj —zw)? 4 =

(recall thatz; = exp(2x;)) and the corresponding equilibrium equations

j<k

N a4z 1
=Y e e - )+ By — (B—v)7 ] =0. ®)
k#j (Z/ - Zk) 4
J
The latter are in general highly nonlinear and the properties of their solutions are far from
obvious. To investigate some of them, the trick used in [10-12] might be applied.
Following Ahmed [11], let us denote aBy(z) a polynomial constructed from the

solution{z;} of the equilibrium equations

N
Py(z) =[] -z ©
j=1

Note that for eacty one can define the functiof(z) = z(z + z;)(z — z;) 3d log Py (z)/dz
which is proportional ta =2 asz — oo and has simple poles at= z; (k # j) with residues
resF;(z)|,—,, = —z(z; + z)(z; — zx) 3. Then the equilibrium equations (8) can be recast
in the form

1eSF; (2)|:=s, = 2a1; + zj(4az; — 3a3;) + 22 (asj + a3; — 2a1;az;)

=G - )+ B+y —(B—1z? (10)

wherea,; = [P}, (z;)]* (d/dz)*™* Py(2)|:—;,.- Let us now suppose thaty(z) obeys the
second-order differential equation

2%P(2) + w1(z) Py (2) + w2(z) Py(z) = 0 (11)
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where wy 2(z) are some polynomials in. By using the equalityPy(z;) = O, one finds
upon consecutive differentiation of (11) that €%2) ;= is expressed through; 2, and
that equation (10) is equivalent to the relation

d 1 1
& |:w2 + 21(012(12 + Z_Z) — z_zwf) + éw/l +2z(B+y)+ (B — J/)z_l)i|= 0.
It is satisfied byw1(z) = —a(z? — 1) + (418 — Y1)z, wo(z) = (o — 4B)z + ey, Where
y1 = 4a~1y. One of the solutions to (11) is aMth-degree polynomial if the parameters
and g are correlated:

N-1
Taking this constraint into account, one can finally write equation (11) in the form
22Py(2) —[a(z® =) + (1 + N = Dz] Py (2) + [aNz + en] Py(2) = 0. (13)

It has two irregular points located at= 0, co and thus cannot be reduced to the equation
of the Bessel or hypergeometric type. The substituiiariz) = ZZN:{,l d;z' + zV yields the
recurrence relation for the coefficier{ig}

adj_1(N =1+ D +dey+1(l—y1—N)]+al+Ddy1=0 [=0,...,N (14)
which has to be treated under the conditions
d_1=0 dy =1 dyy1=0. (15)

This results in anNth-order algebraic equation in the parameigr the proper solution
being determined by the positivity of all the roots Bf;(z). It is unique since the system

of particles with repulsive interaction has only one equilibrium position being confined by
the external field (3). It is worth noting that (13)—(15) allow one to express various sums
Ss = Zj]."zl zf of the roots of (8) in terms of, y; andey; in particular, some of these are
given by

S o=N+4eya (1 +N—-1) S_1=a ey

Si=aYeyn—Ny)  Sa=N—-a%@ey—NyD(n—N+1D).
The energy (7) of the classical equilibrium configuration does not depeng on

N[N?-1

EC| = _E [3 + J/12 - 2(12} .

Having prepared the solutions to the equilibrium equations in a suitable form, let us now
consider the quantum spin chain with the Hamiltonian (4) under constraint (12) and construct
its eigenvectors by the action of the spin-flip operaters} on one of the ferromagnetic
vacua|0) = | 11 --- 1). The eigenvectors in sectofs = N/2 — M can be written as

N M
)= D i [ [ 05100 (16)
a=1

J1F 2 FEim
As for the amplitudes of the excitations in the one-magnon sector of the model, we use the
ansatz

_ 0(z;)
Py(z))

é;
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whereQ(z) is some polynomial. Using the properties{ef}, we find that the eigenproblem
H|p1) = e1]|¢1) is equivalent to the differential equation
220" — Qe =D+ (1 + N = 3)z] + Q[a(N — 2)z + ey + 21 — (y1 + N — )] = 0.

17)
An analysis similar to that for (13) shows that there &re- 1 polynomial solutions to (17)
which correspond to different choices of the eigenenergy Together with the trivial
solution to the eigenproblemy); = constant, they give a complete set of one-magnon

excitations.
In M-magnon sectors withf < N/2, we work with the ansatz

Hﬁu (Zj)\ - Zju)z
M
I_I;L:l PI/V (Z.fu)

where Q(z1, ..., zy) is some symmetric polynomial ifz} of degreeD < N — 2M + 1,
and find that the eigenequation

M N M
Do ikl teriu = Bl F (Z hj ji + €M> Gjrjuy =0

s=1 k#Ji sk
can be cast in the form of a second-order partial differential equatio@for
M 729/dz; — 220/

M 2

d a0

2 2 j
i — —laz; =D+ (11 + N — 3)z] }-{-ZE
j=1{ !0z ! 9z P

Q(Zjl, RN ZjM)

Pjaojn =

Zj — 2k

+ {M[(M — 1AM +1)/3— M1+ N — 1) +ex]
M
+a(N—2M)sz—26M}Q=O. (18)
k=1

For evenN, an obvious solution to (18) in the sector wish= S, = 0 (M = N/2) is
Q = constant, which gives an eigenenergy

enp =1/2{M[(M —1)(4M + 1)/3— M (1 + N — 1) + &y]}.

For non-uniform lattices wittV < 8 under various choices of parameters in (3) constrained
by (12) we have verified numerically that this is the exact ground-state energy of the
antiferromagnetic spin chain with the Hamiltonian (4). However, we did not succeed in
obtaining analytical proof of this fact, as was done in [13] for the Haldane—Shastry chain,
since the equivalent form of the Hamiltonid#h — €y, in contrast to [13], is no longer
evidently positive everywhere except for this state.

For oddN = 2L + 1, the states with minimal total spin and its projection are given by
M = L. The Q-polynomials, as follows from (18), should have degree 1 in each variable
{z;}, being symmetric inz;}. This means thaQ should be linear in the variables

L
ap = Hz‘/ a =[( — DD gy 2<I<L
j=1

whereD = ZJ.L:l 0/9z;. Equation (18) transforms into a system(af+ 1) linear equations
for the corresponding coefficients which gives the set of dnly 1 energies of the spin
chain. A similar reduction procedure works in ea#himagnon sector where the degree of
the Q-polynomial in each variablés;} should beN — 2M.
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In conclusion, we have demonstrated that the quantum spin chains defined on a non-
uniform lattice given by the roots of the equilibrium equations may be completely integrable
by the construction of the explicit form of the Lax relation and one of the conserved currents.
We have calculated some of their eigenenergies for the special case in which the solutions
to (8) are expressed in terms of the roots of some polynomials. This condition leads to the
restriction (12) on the parameters of an external potential confining the classical Sutherland
systems.

The construction of the whole set of eigenvectors and finding other conserved currents
of the model remains an interesting open problem. It might probably be solved within the
framework of the general scheme of the quantum inverse scattering method adapted in [14]
to systems with non-trivial boundary conditions. However, at present there is no explicit
way of applying this scheme to our model.
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